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In this paper, sound transmission through an aircraft sidewall representative double panel

structure is investigated theoretically and parametric and validation studies are conducted.

The studied configuration is composed of a trim panel (receiver side panel) attached to a

ribbed skin panel (source side panel) with periodically spaced resilient mounts. The

also assumed planar for simplicity. The model allows for a 3D incident field and the panels

can be metallic and/or composite. A four-pole formulation is employed for modeling of the

mounts and the absorption provided by the fiberglass that fills the cavity between the

leaves is addressed with an equivalent fluid model. The investigation of mount stiffness,

damping and spacing show that properly designed mounts can increase the TL significantly

(up to 20 dB of difference between rigid and resilient mounts). However, they can create

undesirable resonances resulting from their interaction with the panels. The influence of

cavity absorption is also studied and results illustrate the fact that it is not worth investing

in a highly absorbent fiber if the structure-borne transmission path is not adequately

insulated, and likewise that it is not worth investing in highly resilient mounts without

sufficient cavity absorption. Moreover, the investigation of panel damping confirms that

when structure-borne transmission is present, raising skin damping can increase the TL

even below coincidence, but that on average, greater improvements are achieved by raising

trim damping. Finally, comparison between the periodic model and finite element

simulations for structure-borne transmission shows that the average level of transmitted

energy is well reproduced with the periodic approach. However, the modes are only

captured approximately due to the assumption of an infinite structure.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The transmission loss through composite panels has been largely studied over the years. For instance, Koval studied
sound transmission through an infinite laminated composite cylindrical shell excited by an oblique plane wave [1]. His
work was revisited by Blaise and Lesueur [2] who later proposed a model for diffuse field transmission into 2D [3] and 3D
[4] multi-layered infinite cylinders. More recently, Heron [5] and Ghinet et al. [6,7] addressed the problem of sound
transmission through laminates and sandwich composite panels using a discrete layer formulation.

However, as reported by Yin et al. [8], less attention has been paid to the sound radiation and transmission of these
types of structures when they are periodically stiffened or when they are periodically linked to a companion structure,
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even though stiffening or linking are present in many practical situations [9,10]. This is particularly true in the case of
airplane cabins because the trim, i.e. the receiver side panel, is mounted on periodically spaced ring frames that are ribbed
to the skin (source side panel). Moreover, the mounts attaching the trim to those rings are usually resilient and a sound
treatment package is inserted in the cavity between the panels. Traditionally, the skin was composed of an aluminum
panel stiffened by stringers and ring frames, but composite panels are currently replacing this design due to their excellent
stiffness to weight ratio and resistance to fatigue. Unfortunately, these panels depict poorer acoustic performance:
predictions and measurements [11] both show that their transmission loss is generally inferior or at best equal to their
mass law contour. For this reason, designing efficient noise control systems for composite structures is essential and
modeling tools must therefore be provided to assist engineers in this task.

To the authors’ knowledge, a simplified analytical model assessing sound transmission through a structure having all
the aforementioned features has not been presented in the literature. FEM and FEM-BEM based models are classically used
to address this problem, but the good precision they generally provide comes with a high cost of calculation. The objective
here is to derive a simple approach that will certainly be limited in complexity, yet suitable for quick parameter studies
and optimization and thus useful at early design stages. To respect this constraint, several simplifications are necessary.
First, the double wall partition is considered infinite, which allows the dynamics of its sub-systems to be formulated using
Mead and Pujara’s space harmonics technique [12]. The structure is also assumed flat for purposes of simplicity and
because accounting for a cylindrical structure requires usage of combined space harmonic/modal displacement fields [13]
that would render calculations exceedingly onerous. This limitation is however acceptable since the effect of curvature is
mainly important around and below the ring frequency and this usually happens at low frequencies (e.g. below 450 Hz for
an aluminum fuselage with a radius of curvature of 2 m) where the presented model is questionable anyhow (infinite
extent assumption for instance). Second, the sound treatment package in the cavity, usually an arrangement of various
sound absorbing materials, is replaced by a single layer of fiberglass. Third, the presence of skin stringers is disregarded,
because when stringer spacing and mount spacing are not integer multiples, the resulting periodic schemes would be too
complex to take into account at this stage. Fourth, a diffuse field excitation is assumed although in real cruise flight
conditions, the main excitation is the turbulent boundary layer (TBL). The vibratory response and radiation mechanisms of
panels excited by a diffuse field and by a TBL are quite different [14] and a more realistic study should consider the TBL
excitation case. Still, the presented diffuse field excitation study is useful since it represents a preliminary step to validate
the model. Besides, this type of excitation is used in most transmission loss performance experiments and therefore
remains of practical importance. Fifth, the influence of in plane tensions due to cabin pressurization is ignored for purposes
of simplicity. These tensions are known for instance to raise the panel natural frequencies by adding rigidity to the system.
Finally, the ring frames are considered transparent to the acoustic waves (cavity is not partitioned) because accounting for
this feature requires the use of combined space harmonic/modal displacement fields [15]. Brunskog [15] showed that this
assumption is valid when structure-borne transmission dominates over the airborne path. Yet, in his study, the cavity
between the leaves was filled with air and not with fiberglass as in the present model. Knowing that the fiberglass will
strongly damp the lateral reflections caused by the frames, it is thus reasonable to assume that the effects of the
un-partitioned cavity hypothesis will remain small even in configurations where airborne transmission dominates.

The paper begins with a description of the geometry and the constants of the problem. Next, the equations of motion of the
panels, the ring frames and the trim mounts are derived. Analytical expressions accelerating the solution of the whole system of
equations are also given. For the numerical study, a description of the simulation parameters is first made. Then, the effects of
mount stiffness, damping and spacing, of cavity absorption and of panel damping are presented and discussed. A section where
the model is compared with finite elements simulations is also presented for validation. The paper ends by a summary of the
major conclusions drawn from the parameters and validation studies and by giving perspectives for future work.

This study follows previous work of the authors on the effect of structural links in lightweight double panel structures
[16]. The major recommendation in that article was that with lightweight partitions, the inertia and the resilience of the
links significantly affect structure-borne transmission and therefore must be accounted for. This is the case in the proposed
model. It should also be noted that studies similar to the present investigation were conducted by Craik and his
collaborators [17–19], but in the context of building partitions and by using a SEA approach. The use of such an approach,
i.e. an approach that does not account for the periodicity of the structure, was justified as follows in Ref. [18]: ‘‘Real
structures are not sufficiently well built that they can be considered periodic and so many of the features predicted for
periodic structures (with well defined dips and peaks) are also not observed. This approach is, therefore, of limited value
for the study of real walls.’’ If this is probably the case for building partitions, the tolerances are generally more severe in
aerospace and the hypothesis of periodicity thus remains reasonable. Moreover, this hypothesis can be relaxed by
averaging the transmissibility in third octave bands, which is the case in this paper.
2. The studied structure

2.1. Sub-systems description

A comprehensive diagram of the studied problem is shown in Fig. 1. The insulating structure is made of a skin (panel 1)
ribbed by ring frames periodically spaced at a distance Lx. On each ring, the trim panel (panel 2) is attached by resilient
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Fig. 1. Diagram of the problem.
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mounts periodically spaced at a distance Ly. In Fig. 1, these frames have a symmetric I-shaped cross-section, which is the
geometry studied in this paper. Usually, more sophisticated cross-section profiles are used to provide stiffness and
resistance (e.g. O-shaped beams), but treating such geometries with precision would require more advanced models [20].
Finally, the cavity of width H between the panels is filled with a limp fibrous material. To account for the associated
absorption, an equivalent fluid model [21] that makes use of the Biot’s acoustical properties of the fiber is employed.
Hence, the effective density of the fiberglass rcav and the effective speed of sound and wavenumber ccav and kcav in the fiber
(kcav=o/ccav) are complex and frequency dependent. On both sides of the partition, air with density rair is present and the
associated speed of sound and wavenumber are cair and kair (=o/cair).
2.2. Acoustical excitation, fluid loading and reactions

On the source side, an acoustical plane wave Pinc impinges on the skin panel. The wave makes an angle y (acoustic
incident angle) with the z axis and its projection in the xy plane makes an angle j (acoustic heading angle) with the x axis.
Its amplitude is P0 and its wavenumber kair can be decomposed in the x, y and z directions:

Pinc ¼ P0 expð�jkxx�jkyy�jkz;airzÞ; (1)

where

kx ¼ kair siny cosj; (2)

ky ¼ kair siny sinj; (3)

kz;air ¼ kair cosy: (4)
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The time dependence factor exp(jot) was omitted in Eq. (1) and will henceforth be considered implicit. When it hits the
partition, the incident wave creates a reflected wave Pr in the source region, a pressure Pcav inside the cavity and a
transmitted wave Ptr on the receiver side. The displacements of the panels are noted W1 and W2. Since the rivets bonding
the ring frames to the skin are closely spaced in aeronautic structures (typically less than 1 cm), a full line coupling is
assumed between them. This approximation is valid at frequencies of interest, i.e. less than 10 kHz, because the effect of
discrete fixing becomes significant only when half a bending wavelength of the plate fits between the rivets [18].
Therefore, between the skin and the pth ring frame located at x=pLx, the force per unit length is Qp and the moment per
unit length in the y direction is Mp. On that same ring frame, the point force between the ring and the left side of the mount
located at y=qLy is F1,pq. Between the right side of the mount and the trim panel, the force is F2,pq. The rotational coupling
between the mounts, the ring frames and the trim panel is disregarded.

3. Derivation of the model

3.1. The panels and the cavity

The classical vibration analysis of metallic panels used in aeronautics usually requires only one degree of freedom due
to their slight thickness (�1 mm), i.e. the transversal displacement W of the panel (thin plate in bending analysis). For a
composite panel however, the necessary number of degrees of freedom depends upon its nature. For a composite panel
with thin plies, the Kirchhoff–Love thin plate hypotheses can be applied (transverse shearing and rotational inertia are
neglected) and three degrees of freedom are sufficient to describe its dynamics: the transverse displacement W and the
membrane displacements of the panel’s middle plane. This was the case in Yin et al.’s study [8] (Reddy’s model [22] was
used). On the other hand, when the panel has thick plies or a sandwich construction having a large shearing core (e.g.
honeycomb cores), Reissner–Mindlin’s first-order shear deformation assumptions are needed, and two additional degrees
of freedom in rotation must be introduced, as in Berthelot’s model [23]. In more advanced models [5–7], these five degrees
of freedom are expanded for each layer of the laminate to account for thick skins.

In this paper, the formulation of the equations of motion of the panels are kept as general as possible so that both
metallic and composite configurations can be handled. According to the problem statement made in Sections 2.1 and 2.2,
the equations of motion of the skin and the trim are

D1½W1ðx; yÞ� ¼ PincJz ¼ 0þPrJz ¼ 0�PcavJz ¼ 0�
Xþ1

p ¼ �1

QpðyÞdðx�pLxÞþ
@

@x

Xþ1
p ¼ �1

MpðyÞdðx�pLxÞ

 !
; (5)

D2½W2ðx; yÞ� ¼ PcavJz ¼ H�PtrJz ¼ Hþ
Xþ1

p;q ¼ �1

F2;pqdðx�pLxÞdðy�qLyÞ; (6)

where D1 and D2 are the linear differential operators governing elastic and inertial forces in the skin and the trim panels,
respectively. For an isotropic thin plate in bending, the operator D is given by

D¼Dð1þ jZÞ @4

@x4
þ2

@4

@x2 @y2
þ
@4

@y4

� �
�mso2; (7)

where D, ms and Z, are respectively, the bending stiffness, the mass per unit area and the damping loss factor of the
plate. For a composite panel, this formulation is not strictly rigorous since, as mentioned previously, more than one
degree of freedom is necessary for its vibration analysis. However, as long as the transverse displacement of the whole
panel is described by only one degree of freedom W in the model, i.e. that W is the same for each layer, the analysis is
valid since the equivalent dynamic stiffness of the panel is obtainable for any arbitrary structural wave forcing
propagation in the structure by using its dispersion relationships. Using Berthelot’s model [23], Ghinet et al. [7]
showed how to calculate the impedance associated with an acoustic wave impinging upon the composite panel. The
same approach is used in this paper, but with an arbitrary structural wavenumber kstr and an arbitrary structural
heading angle jstr, i.e. a wavenumber and an angle that are not related to the incident acoustic wave. Therefore, by
assuming space-harmonic expansion for the transverse displacements, the dynamic stiffness of the panel associated to
each space-harmonic wave travelling in the structure can be derived (see Eq. (39)). The method is described in
Appendix A. It is important to mention that employing Mace’s [24] Fourier transform technique as Yin et al. [8] did
would lead to equivalent results for the dynamic stiffness, but would also be more formal. Still, the present method is
interesting since it allows the use of different models for the panels (for instance, in the parameters study, the skin is
assumed composite while the trim is sandwich). It is also important to point out once more that the proposed
approach cannot handle models involving more than one degree of freedom for the transversal displacement of the
panel. With such models, the fluid loading pressures and the reactions of the ring frames and the mounts, depending
on which side they are applied on the panels, would be associated either with the transverse displacement of the first
layer, or with the transverse displacement of the last layer.

To alleviate the notation, let
Pp ¼ þ1

p ¼ �1 ¼
P

p and
Pq ¼ þ1

q ¼ �1 ¼
P

q. Since the system is periodic in the xy plane,
the displacements of the panels and the pressures are written in the form of two-dimensional space harmonic
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series [25]:

W1ðx; yÞ ¼
X
pq

u1;pq expð�j kx;px�jky;qyÞ; (8)

W2ðx; yÞ ¼
X
pq

u2;pq expð�j kx;px�jky;qyÞ; (9)

Prðx; y; zÞ ¼
X
pq

epq expð�jkx;px�jky;qyþ jkz;air;pqzÞ; (10)

Pcavðx; y; zÞ ¼
X
pq

apq expð�jkx;px�jky;qy�jkz;cav;pqzÞþbpq expð�jkx;px�jky;qyþ jkz;cav;pqzÞ; (11)

Ptrðx; y; zÞ ¼
X
pq

xpq expð�jkx;px�jky;qy�jkz;air;pqzÞ; (12)

where

kx;p ¼ kxþ2pp=Lx; (13)

ky;q ¼ kyþ2qp=Ly; (14)

kz;air;pq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

air�k2
x;p�k2

y;q

q
; (15)

kz;cav;pq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

cav�k2
x;p�k2

y;q

q
: (16)

The series are truncated to a finite but sufficient number of terms p and q to ensure convergence at the highest
frequency of interest (10 kHz in this paper), i.e. p= [�pmax, �pmax + 1,y, pmax�1, pmax] and q = [�qmax, �qmax + 1,y,
qmax�1, qmax]. Given the periodic nature of the structure, F1,pq, F2,pq, Qp(y) and Mp(y) can be expressed in terms of
F1,00, F2,00, Q0(y) and M0(y), respectively [24]:

Fi;pq ¼ Fi;00expð�jkxpLxÞ expð�jkyqLyÞ; i¼ 1;2; (17)

QpðyÞ ¼Q0ðyÞ expð�jkxpLxÞ; (18)

MpðyÞ ¼M0ðyÞ expð�jkxpLxÞ: (19)

Moreover, the assumed displacements imply that the force and the moment per unit length Qp(y) and Mp(y) applied
by the pth ring frame on the skin can also be expanded as a sum of space harmonics:

QpðyÞ ¼
X

q

Qpq expð�jky;qyÞ; (20)

MpðyÞ ¼
X

q

Mpq expð�jky;qyÞ: (21)

Since Poisson’s formula allows writing the sum of the d functions as follows:

X
p

dðx�pLxÞ ¼
1

Lx

X
p

exp
�2jppx

Lx

� �
; (22)

X
q

dðy�qLyÞ ¼
1

Ly

X
q

exp
�2jqpy

Ly

� �
; (23)

combining Eqs. (17)–(23) yields:

X
pq

Fi;pqdðx�pLxÞdðy�qLyÞ ¼
Fi;00

LxLy

X
pq

expð�jkx;pxÞexpð�jky;qyÞ; i¼ 1;2; (24)

X
p

QpðyÞdðx�pLxÞ ¼
1

Lx

X
pq

Q0qexpð�jky;qyÞexpð�jkx;pxÞ; (25)

X
p

MpðyÞdðx�pLxÞ ¼
1

Lx

X
pq

M0qexpð�jky;qyÞexpð�jkx;pxÞ: (26)
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As well, continuity at fluid–panel interfaces requires that

@ðPincþPrÞ

@z

�����
�����
z ¼ 0

¼o2rairW1; (27)

@Pcav

@z

�����
z ¼ 0

¼o2rcavW1;

����� (28)

@Pcav

@z

�����
z ¼ H

¼o2rcavW2;

����� (29)

@Ptr

@z

�����
z ¼ H

¼o2rairW2:

����� (30)

Substituting Eqs. (8)–(12) into Eqs. (27)–(30) and utilizing the fact that the continuity equations (in the form of
sums) must be true for all values of x and y, the pressure coefficients and displacement amplitude coefficients are
related for each combination pq by

epq ¼ P0dpq�
jo2rairu1;pq

kz;air;pq
; (31)

apq ¼
o2rcav cscðkz;cav;pqHÞ

2kz;cav;pq
ðexpðjkz;cav;pqHÞu1;pq�u2;pqÞ; (32)

bpq ¼
o2rcav cscðkz;cav;pqHÞ

2kz;cav;pq
ðexpð�jkz;cav;pqHÞu1;pq�u2;pqÞ; (33)

xpq ¼
jo2rair expðjkz;air;pqHÞu2;pq

kz;air;pq
; (34)

where d00 = 1 and dpq = 0 for pa0 or qa0. Inserting Eqs. (24)–(26) and (31)–(34) into Eqs. (5) and (6) and requiring the
sums to be true for all values of x and y, two coupled linear equations are obtained for each combination pq:

K11;pq K12;pq

K21;pq K22;pq

" #
u1;pq

u2;pq

" #
¼

2P0dpq�Q0q=Lx�jkx;pM0q=Lx

F2;00=LxLy

" #
; (35)

where

K11;pq ¼ Kpanel;1;pqþ
jo2rair

kz;air;pq
þ
o2rcav cotðkz;cav;pqHÞ

kz;cav;pq
; (36)

K22;pq ¼ Kpanel;2;pqþ
jo2rair

kz;air;pq
þ
o2rcav cotðkz;cav;pqHÞ

kz;cav;pq
; (37)

K12;pq ¼ K21;pq ¼�
o2rcav cscðkz;cav;pqHÞ

kz;cav;pq
: (38)

In Eqs. (36) and (37), Kpanel,1,pq and Kpanel,2,pq represent the dynamic stiffness of the equivalent panels associated to
the pqth space harmonic. For a composite panel, this stiffness is function of the angular frequency o and of the
structural wavenumber kstr,pq and structural heading angle jstr,pq associated with the pqth space harmonic:

Kpanel;i;pq ¼ f ðo; kstr;pq;jstr;pqÞ; i¼ 1;2; (39)

where

k2
str;pq ¼ k2

x;pþk2
y;q; (40)

jstr;pq ¼ arctanðky;q=kx;pÞ: (41)

Kpanel,i,pq can be derived by using the dispersion relationships of the panels as shown in Appendix A. An interesting
strategy to reduce computation time is to build a matrix containing the dynamic stiffness of the panel prior to the
main calculations (the matrix is three-dimensional since Kpanel is function of o, kstr,pq and jstr,pq). Once it has been
built for structural heading angles ranging between 0 and 2p, for all frequencies of interest and for sufficiently high
structural wavenumbers knowing that p varies from �pmax to pmax and q from �qmax to qmax, the dynamic stiffness
of the panel associated with the pqth space harmonic is easily obtained by interpolating within that matrix. For an
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isotropic thin plate in bending, the dynamic stiffness is independent of the structural heading angle and is given by

Kpanel;pq ¼Dð1þ jZÞk4
str;pq�mso2: (42)

By manipulating Eq. (35), explicit expressions of u1,pq and u2,pq are obtained:

u1;pq ¼ 2P0C11;pqdpq�
C11;pq

Lx
Q0q�

jkx;pC11;pq

Lx
M0qþ

C12;pq

LxLy
F2;00; (43)

u2;pq ¼ 2P0C21;pqdpq�
C21;pq

Lx
Q0q�

jkx;pC21;pq

Lx
M0qþ

C22;pq

LxLy
F2;00; (44)

where

C11;pq C12;pq

C21;pq C22;pq

" #
¼

K11;pq K12;pq

K21;pq K22;pq

" #�1

: (45)

3.2. The ring frames and the trim mounts

For the ring frames, simple Euler–Bernoulli beam modeling is considered. Moreover, translation and torsion motions are
assumed to be decoupled (eccentricity is disregarded). Therefore, the equations of motion in translation and rotation for
the ring frame located at x=0 are, respectively [26]

X
q

Q0q expð�jky;qyÞ�
X

q

F1;0qdðy�qLyÞ ¼ fEIxgeq
@4

@y4
�mB

0 o2

 !
WB;0; (46)

X
q

M0q expð�jky;qyÞ ¼ fEIogeq
@4

@y4
�fGJygeq

@2

@y2
�IOo2

 !
fB;0; (47)

where {EIx}eq is the equivalent bending stiffness of the beam with respect to the x axial axis, {EIo}eq its equivalent warping
stiffness, {GJy}eq its equivalent torsional stiffness with respect to the y axial axis, mB

0 its mass per unit length and IO its
moment of inertia per unit length with respect to the centroidal axial axis. Continuity between the displacements of the
ring frames and the skin (line coupling condition) allows writing the translational displacement WB,0 and the torsion angle
fB,0 of the ring frame located at x=0 as a function of the skin’s displacement:

WB;0 ¼W1Jx ¼ 0 ¼
X
pq

u1;pq expð�jky;qyÞ; (48)

fB;0 ¼
@W1

@x
x ¼ 0

¼
X
pq

�jkx;pu1;pq expð�jky;qyÞ:

�����
����� (49)

Knowing that Eqs. (46) and (47) must be true for all values of y, the following relationships are obtained for each q by
considering Eqs. (24)–(26) and (46)–(49):

Q0q�
F1;00

Ly
¼ KBT;q

X
p

u1;pq; (50)

M0q ¼ KBR;q

X
p

�jkx;pu1;pq; (51)

where

KBT;q ¼ fEIxgeqk4
y;q�mB

0 o2; (52)

KBR;q ¼ fEIogeqk4
y;qþfGJygeqk2

y;q�IOo2: (53)

For the trim mounts, the force and the displacement on the left side of each mount can be linked to the force and the
displacement on its right side by a dynamic transfer matrix T (four pole formulation). For the mount located at x=0 and
y=0, this yields

F1;00

WB;0Jy ¼ 0

" #
¼

F1;00

W1Jx;y ¼ 0

" #
¼

T11 T12

T21 T22

" #
F2;00

W2Jx;y ¼ 0

" #
: (54)

The terms in the matrix T are usually derived experimentally for elastomeric mounts [27], but in this study, the mounts are
modeled by a lumped mass-spring-mass system. The total mass of the mount mmount is split equally between the two
lumped masses (mmount/2) and the spring’s stiffness of the mount is Kmount. Structural damping is introduced through the
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loss factor Zmount. The T matrix thus takes the following form:

T¼
T11 T12

T21 T22

" #
¼

1�
mmounto2

2K�mount

�mmounto2 1�
mmounto2

4K�mount

� �
1

K�mount

1�
mmounto2

2K�mount

2
66664

3
77775; (55)

K�mount ¼ Kmountð1þ jZmountÞ: (56)

The following relationship is obtained through manipulation of Eq. (54):

W1Jx;y ¼ 0

W2Jx;y ¼ 0

" #
¼

P
pq

u1;pqP
pq

u2;pq

2
64

3
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" #
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F2;00

" #
: (57)

3.3. Expression for the transmission loss

The number of linearly independent equations now matches the number of unknowns. However, to decrease
computation time, the size of the system must be reduced. First, by summing Eq. (43) over all values of p and combining
the result with Eqs. (50) and (51), Q0q and M0q can be expressed in function of F1,00 and F2,00:

Q0q

M0q

" #
¼ 2P0dq

k1;q

k2;q

" #
þ

c11;q c12;q

c21;q c22;q

" #
F1;00

F2;00

" #
; (58)

where

k1;q

k2;q
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¼

w11;q w12;q
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" #
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" #
; (59)
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with d0=1 and dq=0 for qa0. Summing Eqs. (43) and (44) over all ps and qs by replacing Q0q and M0q with Eq. (58)
yields P

pq
u1;pqP

pq
u2;pq

2
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where
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Gi ¼ 2P0 Ci1;00�k1;0

X
p

Ci1;p0

Lx
�k2;0

X
p

jkx;pCi1;p0

Lx

 !
; i¼ 1;2: (65)

Combining Eqs. (57) and (62), a system of equations is obtained and solved for F1,00 and F2,00:

½A�S�F¼G: (66)

With F1,00 and F2,00, Q0q and M0q can be calculated for each q from Eq. (58). The reactions Q0q, M0q, and F2,00 are then
substituted back into Eqs. (43) and (44) to find u1,pq and u2,pq for each p and q. The coefficients xpq of the transmitted
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pressure are then obtained through Eq. (34) and used to calculate the oblique transmission coefficient t(y,j) of the
periodic model:

tðy;jÞ ¼
P

pqjxpqj
2 Refkz;air;pqg

jP0j
2kz;air

: (67)

The diffuse field transmission coefficient td is finally calculated by integrating t(y,j) over the acoustic incident angle y and
acoustic heading angle j [28]:

td ¼

R 2p
0

R ylim

0 tðy;jÞsiny cosydydjR 2p
0

R ylim

0 siny cosydydj
¼

1

p

R p
0

R ylim

0 tðy;jÞsin y cosydydjR ylim

0 siny cosydy
; (68)

and is used in the transmission loss (TL) formula:

TL¼�10 log10ðtdÞ: (69)

Note that field incidence is considered in this paper, i.e. ylim=781 [28].

4. Numerical results

4.1. Simulation parameters

This section lists the parameters that are used throughout the numerical study. Two configurations are investigated: a
configuration where the skin panel is metallic and another where it is composite. A composite sandwich is used for the
trim panel in both configurations. Table 1 presents the properties of the materials used for the panels. In the metallic
configuration, the skin is a 1 mm isotropic thin plate made of material 1 (aluminum). The ring frames, also made of
material 1, have a web length of 47 mm, a flange length of 38 mm and a wall thickness of 3 mm. Calculation of the beam
properties associated with these frames is made using textbook formulas [29].

For the composite configuration simulation, the skin is a symmetric laminate made from seven 0.25 mm layers of
material 2, which gives a surface mass almost equal to the metallic case. The ply angle sequence is 01/451/�451/901/�451/
451/01 (the ply angle is defined in the same way as the acoustic heading angle j). This time, the frames are made from
three composite sub-panels (two horizontal for the flanges and one vertical for the web) that are exactly equivalent to the
skin panel except that every layer thickness is doubled to 0.5 mm to provide stiffness (the wall thickness of the frames is
therefore 3.5 mm). The web and flange lengths of the frames are kept at 47 and 38 mm. Lee and Kim [30] showed how to
calculate the equivalent beam properties of these constructions. Finally, the trim is a symmetric sandwich panel with a
12.7 mm thick core of material 3 and with 1.2 mm thick skins made of material 4. The three layers have a 01 ply angle
orientation. It should be noted that the model presented by Ghinet and Atalla [6,31] is used in the derivation of the
dynamic stiffness matrix of the trim instead of using Berthelot’s model [23] as for the skin (the procedure detailed in
Appendix A remains the same even if the dispersion equations are different). This model assumes the trim’s skins to be
composite and accounts for orthotropic cores. It has been shown both experimentally and numerically to apply well for
sandwich structures where dilatational motion is not perceptible at the audible frequencies of interest [31,32].

For the fiberglass filling the cavity, the Biot’s acoustical properties given in Table 2 are used. These are values
representative of typical aircraft fiberglass grades. The numerical constants for air on both sides of the partition are
rair=1.21 kg m�3 and cair=342 m s�1; the width H of the cavity is 50.8 mm (2 in) and the ring frame and trim mount
spacing Lx and Ly are 762 mm (30 in) and 305 mm (12 in). For the mounts, a mass of 0.01 kg is considered. The mount
structural damping varies between 1 percent and 50 percent and the stiffness between 104 and 107 N m�1.

Simulations are done in one twelfth octave bands for frequencies ranging from 100 Hz to 10 kHz and the diffuse field
transmissibility is averaged in third octave bands to smooth the TL fluctuations caused by the pass and stop bands
characteristic of periodic structures [33]. Finally, pmax and qmax are set to 45 and 20 to reach a satisfactory level of
convergence, i.e. less than 1 percent of difference in the TL curve up to 10 kHz if pmax and qmax are both raised by five (i.e. 50
and 25, respectively).
Table 1
Material properties used for the panels.

Property Material 1 Material 2 Material 3 Material 4

Young modulus—x direction (Pa) 70�109 1.25�1011 0.1448�109 0.48�1011

Young modulus—y direction (Pa) 70�109 10�109 0.1448�109 0.48�1011

Shear modulus—xy plane (Pa) 26.3�109 5.9�109 0.5�108 0.181�1011

Shear modulus—xz plane (Pa) 26.3�109 3�109 0.5�108 0.2757�1010

Shear modulus—yz plane (Pa) 26.3�109 5.9�109 0.5�108 0.2757�1010

Poisson’s ratio—xy plane 0.33 0.4 0.45 0.30

Density (kg m�3) 2750 1600 110.44 1550

Damping loss factor 1% 1% 1% 1%
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Table 2
Dynamic properties of the fibrous material (property, value).

Density of the fluid phase 1.21 kg m�3 Tortuosity 1.25

Speed of sound in the fluid phase 342 m s�1 Viscous length 50�10�6 m

Flow resistivity 20 000 Ns m�4 Thermal length 100�10�6 m

Porosity 0.94 Density of the solid phase 5.5 kg m�3
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4.2. The influence of mount stiffness

Figs. 2 and 3 present the calculated results for the metallic and composite configurations, respectively. Seven curves are
plotted in each figure: a curve showing the airborne transmission only (the mounts are perfectly resilient in that case, i.e.
Kmount=0), a curve where the mounts are perfectly rigid (Kmount=N), four other curves where mount stiffness varies
between 104 and 107 Nm�1 and where the structural loss factor is 1 percent and finally, a curve showing structure-borne
transmission only for Kmount=107 Nm�1. This last curve was obtained by inhibiting the fluid coupling between the panels
(vacuum inside the cavity) and is presented to show the regions of dominance of structure-borne vs. airborne transmission.

Below 4 kHz, the results for the metallic and the composite configurations are almost identical, as their skins have
similar surface masses. Moreover, the dip associated with the critical frequency of the trim panel is observed at 1.6 kHz for
the two curves. However, above 4 kHz, the critical frequency of the composite skin panel occurring at 8 kHz creates
appreciable differences between the two cases (up to 15 dB at 10 kHz). The dips seen at 400 Hz in both cases, at 6.3 kHz for
the composite case and at 8 kHz for the metallic case are caused by the periodic nature of the structure, i.e. that pass bands
of important magnitude are present in the third-octave band associated with these frequencies. This reduces the global
energy of the band when the transmissibility is averaged.

At low frequencies (fo300 Hz), the additional stiffness provided by the perfectly rigid mounts and by mounts with
Kmount=106 and 107 Nm�1 increases the TL by concealing the mass-air-mass resonance [28] of the double-wall partition.
This resonance occurs at 160 Hz for perfectly resilient mounts and for Kmount=104 and 105 Nm�1. On the contrary, the
mount stiffness has a deleterious effect on the TL at mid and high frequencies: as the latter increases, the TL decreases. This
is because the structure-borne path starts to dominate over the airborne path (up to 20 dB of difference between the
perfectly rigid and perfectly resilient mounts). It is also observed that when structure-borne transmission dominates with
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Kmount=107 Nm�1, the additional equivalent mass and damping provided by the fiberglass inside the cavity results in a
higher TL for the total transmission than the TL for structure-borne transmission alone. With Kmount=105 Nm�1, almost
complete structural insulation is reached for frequencies of interest. Therefore, lowering the stiffness to 104 Nm�1 has
practically no effect since airborne transmission already dominates. To exploit its full potential, a mount with a stiffness of
104 Nm�1 would have to be used with a fiber with greater absorption.

With Kmount=106 Nm�1, the TL is higher than with rigid mounts over the entire spectrum except for frequencies ranging
between 200 and 315 Hz. The same behavior is observed with Kmount=107 Nm�1 (the TL is slightly higher on the whole
frequency range except between 4 and 10 kHz). To explain these counterintuitive results, i.e. to explain why the TL with
resilient mounts can go under the TL with rigid mounts, an analysis based on Fahy’s assumptions for structure-borne sound
in mechanically coupled double leaf partitions can be exploited [28]. First, let vmount,1 and vmount,2 be the velocities of the
first and the second panel at the mount location and Zp,1 and Zp,2 be the local driving point impedances. Then, assume that
the motion of each mount is independent of any other. Finally, let v1 be the global velocity of the first panel far from the
mounts. The driving force exerted on a mount by the first panel is therefore given by Zp,1(v1�vmount,1) and the equations of
motion for the two lumped masses of the mount, are respectively,

jommount

2
vmount;1 ¼

K�mount

jo
ðvmount;2�vmount;1ÞþZp;1ðv1�vmount;1Þ; (70)

jommount

2
vmount;2 ¼

K�mount

jo
ðvmount;1�vmount;2Þ�Zp;2vmount;2: (71)

Combining Eqs. (70) and (71) yields the following velocity ratio vmount,2/v1:

vmount;2

v1
¼

Zp;1

ðZp;1þZp;2Þ 1�mmounto2

2K�mount

� �
þ

joZp;1Zp;2

K�mount
þ jommount 1�mmounto2

4K�mount

� � : (72)

Even if it is based on simplified reasoning, this ratio gives a good retrospective view of the parameters influencing
structure-borne transmission. It shows that structural transmissibility with flexible mounts can be higher than with rigid
mounts since the amplitude of the ratio at Eq. (72) is not necessarily maximal for Kmount=N. Moreover, it shows that this
maximum value will not exactly occur at the resonance frequency of the mass-spring-mass system due to the interaction
of the mounts with the panels (for Kmount=106 Nm�1 and mmount=0.01 kg, the mass-spring-mass frequency is 3.2 kHz).
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For thin isotropic plates in bending, expressions for Zp,1 and Zp,2 are known (Zp=8(Dms)
1/2) [28] and thus the ratio

vmount,2/v1 can be easily calculated for a quick assessment of the mounts effects using Eq (72). Actually, if the mounts’
dynamics were described with a general four-pole formulation instead of a lumped mass-spring-mass system (see
Eq. (54)), the following equation for the ratio vmount,2/v1 should be used:

vmount;2

v1
¼

Zp;1

T12þZp;2T11þZp;1ðZp;2T21þT22Þ
: (73)

However, for ribbed composite panels, simple expressions for Zp,1 and Zp,2 are not available and this is why the present
model is relevant, i.e. to detect undesirable resonances between the mounts and complex structures. To assess the validity
of the transmissibility analysis of the model, the ratio vmount,2/v1 was calculated for a simple double wall configuration
made of un-ribbed isotropic aluminum panels. The panels’ thicknesses were 1 mm (panel 1) and 2 mm (panel 2). Two
values of mount stiffness were tested with this configuration: Kmount=N (rigid mounts) and Kmount=106 Nm�1. The results
for the two cases are presented in Fig. 4 together with the associated transmission loss. The rest of the parameters are the
same as in the transmission loss calculations. Below 4 kHz, the ratio vmount,2/v1 predicts that the structural transmissibility
with Kmount=106 Nm�1 will be higher than with rigid mounts due to a resonance. Therefore, the transmission loss should
be lower for this case than with rigid mounts, which is exactly what is observed in Fig. 4. Above 4 kHz, the tendency is
reversed and so is the transmission loss. The transition frequency between the two regimes is captured very well by the
transmissibility analysis, which confirms its validity. This suggests that the latter analysis could be used to predict if a
mount with known dynamic properties will create an undesirable resonance.

4.3. The influence of mount damping

Fig. 5 shows the effect of the mount damping for the composite configuration (results for the metallic configuration are
not presented to avoid redundancy). Mount stiffness was kept constant (Kmount=106 Nm�1), but mount structural damping
varied between 1 percent and 50 percent. The curves for rigid mounts and for airborne transmission only are also shown
for comparison. As the damping of the mount increases, the TL increases in the region where the interaction of the mounts
with the whole structure creates a resonance (between 200 and 315 Hz), but significant impacts are not seen elsewhere
(less than 1 dB of difference). This indicates that having a sufficient level of structural damping for the mount is important
to avoid deep TL dips in resonance regions (up to 5 dB of difference at 315 Hz between the curves for 1 percent and 50
percent of structural damping). This is consistent with the transmissibility analysis carried out in Section 4.2. It should be
noted that similar conclusions were obtained with Kmount=107 Nm�1 between 4 and 10 kHz, but the results are not
presented to avoid redundancy.
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4.4. The influence of mount spacing

Fig. 6 illustrates the effects of mount spacing Ly for rigid (Kmount=N) and massless (mmount=0) mounts. Six curves are
compared in total: a curve where the mounts are absent (Ly=N), four curves where Ly takes values of 152 mm (6 in),
305 mm (12 in), 610 mm (24 in) and 1219 mm (48 in) and a final curve where a full line coupling condition is assumed
between the ring frames and the panels (Ly=0). This last curve was obtained by adapting the model presented in Ref. [16]
for the current study. To do so, the rotational coupling between the ring frames and the trim panel was suppressed in that
model. Moreover, the number of terms q was adapted in function of Ly to ensure convergence (doubling qmax when Ly

doubled was found to be adequate). As expected, when mount spacing decreases, more energy is transmitted from the skin
to the trim and the TL is lowered. This is however not true for all frequencies since the TL with point connections is lower
than the TL with a full line connection for a small range at mid-frequencies (the range is dependent on Ly). This behavior is
attributable to the periodic nature of the structure (presence of pass-bands). The transition frequency at which the TL for
point connections starts to be higher than the one for line connections is also in good agreement with the half bending
wave length criteria mentioned in Section 2.2. For example, with Ly=152 mm, the transition frequency would be 1125 Hz
(=cair/2Ly), which is close to the observed value (�1250 Hz). Therefore, when rigid mounts are employed (which should be
avoided), spacing must be set to the highest possible value in order to maximize the transmission loss.
4.5. The influence of cavity absorption

Fig. 7 presents the effect of cavity absorption on the transmission loss for mount stiffness and damping of 106 Nm�1 and
1 percent. The absorption was modified by raising the flow resistivity sfiber of the fiberglass filling the cavity from 20 000 to
40 000 Nsm�4. The other parameters in Table 2 were kept constant even though they are never totally independent from
the flow resistivity in practice. Curves showing airborne transmission only (Kmount=0) for 20 000 and 40 000 Nsm�4 and a
fifth curve showing structure-borne transmission only are also illustrated. Below 1 kHz, no observable effect occurs upon
raising the absorption when the mounts are present and between 1 and 6.3 kHz, the effects remain limited (less than 1.5 dB
of difference). In comparison, the increase in TL when the mounts are absent reaches almost 5 dB above 1 kHz. Such
behavior is understandable since the structural path prevails over the airborne path at mid and high frequencies with a
mount stiffness of 106 Nm�1. Therefore, the principal effect of raising the absorption in the presence of mounts that do not
fully inhibit structure-borne transmission is to add effective damping to the panels, which in the end does not reduce the
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whole transmission significantly. Above 6.3 kHz, the airborne transmission dominates again and the fiber becomes
effective (the total transmission is almost equal to the airborne transmission).

4.6. The influence of panel damping

Fig. 8 compares the transmission loss for three configurations of skin panel and trim panel damping: Zskin=1 percent
and Ztrim=1 percent (original configuration), Zskin=5 percent and Ztrim=1 percent, Zskin=1 percent and Ztrim=5 percent. The
selected 5 percent of damping represents a realistic and achievable level of damping. The modeling assumes however
damping to be constant over the whole frequency range and does not account of any added mass (this is not the case in real
life where damping is classically achieved using an attached damping layer). The comparison is done for the uncoupled
configuration (Kmount=0) and a coupled configuration where the structure-borne and airborne transmission paths are of
the same order of magnitude, (Kmount=106 Nm�1; see Fig. 7). When the skin damping is raised to 5 percent, an increase in
the transmission loss of 2–5 dB is observed for both the coupled and uncoupled configurations in the vicinity and above the
critical frequency of the panel (above 5 kHz). Below this region, no significant effect occurs for the uncoupled configuration
while an increase of 1–2 dB is seen for the coupled case starting around the critical region of the trim panel (1.6 kHz). These
results confirm the experimentally known fact that above the critical frequency of the trim panel (1.6 kHz), if structure-
borne transmission is present, the damping of the skin panel can make a difference, for diffuse field excitation, even below
its critical frequency. Increases in the TL are also observed when trim damping is raised to 5 percent, except that this time,
significant improvements in the TL begin at 1 kHz for both the coupled and uncoupled configurations. These improvements
are, on average, more important compared to skin damping.

4.7. Comparison with finite elements

In order to validate the periodic model and to assess its limitations due to the assumption of an infinite structure, the
latter was compared to finite element method—boundary element method (FEM-BEM) simulations for a full metallic
structure made of a 2 mm thick aluminum panel (panel 1) and a 3 mm thick aluminum panel (panel 2). Attention was
focused on the structure-borne path alone to see how well the periodic model reproduces the modal behavior associated to
this path at low frequencies, but also to reduce the computational and memory usage cost of the FEM model by not
meshing the fluid (a vacuum is assumed inside the cavity). Other parameters such as frame profile or frame and mount
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Fig. 9. Periodic Model vs. FEM—line connections.

Fig. 10. Periodic Model vs. FEM—rigid and massless point connections.
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Fig. 11. Periodic Model vs. FEM—point connections with Kmount=106 Nm�1 and mmount=0.01 kg.
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spacing (Lx=762 mm, Ly=305 mm) were kept constant. In the FEM model, the dimensions of the panels were 3042 mm
along x and 1829 mm along y so that a total of 15 full periodic bays were contained within the boundaries. The panels were
assumed to be simply supported along their edges. Calculations were made up to 2 kHz in 1/12 octave bands but the
transmissibility was not averaged in 1/3 octave bands to avoid smoothing the modes. Modes ranging from 1 to 3 kHz were
calculated with NASTRAN and an in-house boundary element solver was employed to calculate the TL using these modes
(the code uses modal synthesis for the vibration response and Rayleigh’s integral for the radiation response since the
panels are assumed flat and baffled). A diffuse field approximated with a superposition of 64 planes waves (8 angles along
the incident direction y and 8 angles along the heading direction j) was used. In total, 24 000 elements were used to mesh
each panel (200 along x, 120 along y), so that the minimum criterion of 6 elements per unit wavelength was respected for
all the modes of the 2 mm panel below 3 kHz. It should be noted that this structure is clearly not representative of aircrafts
sidewalls and is only studied for validation purposes.

Three cases were tested and the results are presented in Figs. 9–11. The first case corresponds to a full line coupling
between the two panels. As in the spacing study, the results for the periodic model were obtained by adapting the model
presented in Ref. [16]. The second case corresponds to a discrete mount coupling in which Ly=305 mm, but where the
mounts are assumed to be rigid and massless. Finally, in the third case, the mounts are also discrete (Ly=305 mm), but they
are resilient with mass (Kmount=106 Nm�1; mmount=0.01 kg). Screenshots of the FEM-BEM geometry for these three cases
are also given in the figures.

At first sight, the agreement between the periodic model and the FEM simulations is quite satisfying; the average level
of transmitted energy is well reproduced at mid and high frequencies (f4300 Hz) for the three cases. However, the modes
are not captured precisely with the periodic approach, especially at low frequencies. This was expected since the effects of
finite dimensions and boundary conditions are more significant at low frequencies. Therefore, it is clear that by raising the
panels’ dimensions and incorporating more and more periodic bays into the FEM model, the agreement with the periodic
model would increase and the frequency at which major discrepancies would be observed would get lower. Unfortunately,
this cannot be done in practice due to calculations limitations. Still, the presented examples show a good agreement for the
average level of transmitted energy, thus corroborating the validity of the presented model.

5. Conclusion

In this paper, an analytical model assessing the influence of trim mounts on the sound transmission of an aircraft
sidewall representative double panel structure was presented. The effects of parameters that can be selected by designers
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were studied and conclusions with practical impacts were drawn. First, it was seen that the use of resilient mounts could
reduce the structure-borne transmission path significantly for both metallic and composite structures when they are
properly designed (up to 20 dB of difference between rigid and resilient mounts). However, it was also observed that they
could create undesirable resonances resulting from their interactions with the panels. To reduce the impact of these
resonances, raising the structural damping of the mount was shown to be important. The effect of mount spacing was
investigated for rigid mounts and the results confirmed that increased spacing means lower energy transmission (up to
25 dB of difference at mid and high frequencies when comparing the situation with no structural coupling to the one with a
full line coupling). Therefore, if rigid mounts are employed—a choice that is not realistic for typical aircraft structures—a
compromise must be made between acoustical insulation and structural constraints when selecting the spacing intervals.
The study of cavity absorption showed that using a more efficient sound treatment package is not worth the investment if
the structure-borne path is not adequately insulated and that the opposite situation was also true. This conclusion may
seem intuitive and perhaps trivial, but the model could provide results in support of this statement. Moreover, the
investigation of panel damping confirmed that in the presence of structure-borne transmission, raising the skin damping
can increase the TL even below coincidence (from 1 to 2 dB of difference between 1 percent and 5 percent of damping
below 5 kHz). However, in the vicinity and above the critical frequency of the trim panel, i.e. above 1 kHz, improvements
are, on average, greater if trim damping is raised instead of skin damping. Finally, comparison between the periodic model
and finite element simulations for structure-borne transmission show that the average level of transmitted energy is well
reproduced with the periodic approach. However, the modes are only captured approximately due to the assumption of an
infinite structure.

In conjunction with experimentally derived data for the four pole transmission parameters of the mounts in Eq. (54),
the model could be used to provide a preliminary assessment of the performance of real mounts or conversely, to find what
would be the ideal parameters for a given structure. Even so, it will be important in the future to continue adding
refinement to it by including the panels’ curvature, the presence of skin stringers, the handling of TBL excitation and the
influence in plane tensions due to cabin pressurization. Ongoing work targeting the incorporation of these features will be
presented in a future paper.

Appendix A. Calculation of the equivalent dynamic stiffness of the composite panel

When a wave of amplitude P is forced to propagate in the composite panel with a structural wavenumber kstr,pq and a
structural heading angle jstr,pq, the equations of motion for the panel using Berthelot’s flat laminate model [23] are

b11�rso2 b12 0 b14�Ro2 b15

b21 b22�rso2 0 b24 b25�Ro2

0 0 b33�rso2 b34 b35

b41 b42 b43 b44�Ixyo2þF55 b45þF45

b51 b52 b53 b54þF45 b55�Ixyo2þF44

2
6666664

3
7777775

ux

uy

W

fx

fy

2
6666664

3
7777775
¼

0

0

P

0

0

2
6666664

3
7777775
; (A.1)

where ux and uy represent the displacements of the panel’s middle plane in the x and y directions, W its transverse
displacement and fx and fy its angular displacements with the z axis in the xz and yz planes. The coefficients bij are

b11 ¼ ðA11 cos2 jstr;pqþ2A16 cosjstr;pq sinjstr;pqþA66 sin2 jstr;pqÞk
2
str;pq;

b12 ¼ b21 ¼ ðA16 cos2 jstr;pqþðA12þA66Þcosjstr;pq sinjstr;pqþA26 sin2 jstr;pqÞk
2
str;pq;

b14 ¼ b41 ¼ ðB11 cos2 jstr;pqþ2B16 cosjstr;pq sinjstr;pqþB66 sin2 jstr;pqÞk
2
str;pq;

b15 ¼ b51 ¼ ðB16 cos2 jstr;pqþðB12þB66Þcosjstr;pq sinjstr;pqþB26 sin2 jstr;pqÞk
2
str;pq;

b22 ¼ ðA66 cos2 jstr;pqþ2A26 cosjstr;pq sinjstr;pqþA22 sin2 jstr;pqÞk
2
str;pq;

b24 ¼ b42 ¼ ðB16 cos2 jstr;pqþðB12þB66Þcosjstr;pq sinjstr;pqþB26 sin2 jstr;pqÞk
2
str;pq;

b25 ¼ b52 ¼ ðB66 cos2 jstr;pqþ2B26 cosjstr;pq sinjstr;pqþB22 sin2 jstr;pqÞk
2
str;pq;

b33 ¼ ðF55 cos2 jstr;pqþ2F45 cosjstr;pq sinjstr;pqþF44 sin2 jstr;pqÞk
2
str;pq;

b34 ¼�b43 ¼ jkstr;pqðF55 cosjstr;pqþF45 sinjstr;pqÞ;

b35 ¼�b53 ¼ jkstr;pqðF44 cosjstr;pqþF45 sinjstr;pqÞ;
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b44 ¼ ðD11 cos2 jstr;pqþ2D16 cosjstr;pq sinjstr;pqþD66 sin2 jstr;pqÞk
2
str;pq;

b45 ¼ b54 ¼ ðD16 cos2 jstr;pqþðD12þD66Þcosjstr;pq sinjstr;pqþD26 sin2 jstr;pqÞk
2
str;pq;

b55 ¼ ðD66 cos2 jstr;pqþ2D26 cosjstr;pq sinjstr;pqþD22 sin2 jstr;pqÞk
2
str;pq: (A.2)

The elastic constants Aij, Bij, Dij and Fij and inertial terms rs, Ixy, and R are given by Berthelot [23]. By solving the matrix
system in Eq. (A.1), the transverse displacement W is obtained and the dynamic stiffness of the panel associated with the
wave propagating in the structure can be derived:

Kpanel;pq ¼
P

W
: (A.3)

It should be noted that the dispersion equations in Eq. (A.1) allow asymmetry of the composite panel even though a
symmetric panel was considered for the skin in this study.
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